594 research outputs found

    Study of extravehicular protection and operations

    Get PDF
    Extravehicular protection and operation

    Thomas A. Flinn - In Memoriam

    Get PDF

    Thomas A. Flinn - In Memoriam

    Get PDF

    Climate Change Adaptation Challenges Facing New Brunswick Coastal Communities: A Review of the Problems and a Synthesis of Solutions Suggested by Regional Adaptation Research

    Get PDF
    Through a detailed examination of research conducted in Sackville, New Brunswick, this study synthesizes the findings of a series of focus groups and one-on-one interviews with the aim of achieving the following objectives: to identify and elucidate the important challenges related to climate change that New Brunswick coastal communities are currently facing; and to highlight solutions to these challenges. A number of key impediments are identified (e.g., low levels of community consensus) and the following solutions are proposed: to use flood risk visualization and software to aid adaptation planning; to ensure that high quality data are routinely gathered and shared; to build on ongoing community collaboration and communication; and to strengthen political and community leadership.Grâce à un examen détaillé d’une recherche menée à Sackville, au Nouveau-Brunswick, cette étude résume les trouvailles d’une série de groupes de discussion et d’entretiens de face à face en vue de réaliser les objectifs suivants : déterminer et élucider les défis importants en matière de changement climatique auxquels sont actuellement aux prises les populations côtières du Nouveau-Brunswick et mettre en évidence des solutions aux problèmes en question. On a cerné un certain nombre de principaux obstacles (p. ex. peu de consensus au sein des membres de la collectivité), et les solutions suivantes ont été proposées : utiliser la visualisation des zones exposées aux inondations et des logiciels afin de faciliter le programme d’adaptation, veiller à ce que des données de grande qualité soient recueillies régulièrement et partagées, miser sur la collaboration et la communication continues au sein de la collectivité, renforcer le leadership politique et communautaire

    The effect of metabolic phenotype on sociability and social group size preference in a coral reef fish

    Get PDF
    Although individuals within social groups experience reduced predation risk and find food patches more consistently, there can be competition for food among groupmates. Individuals with a higher standard metabolic rate (SMR) may be less social, to prioritize food acquisition over defense, while a greater maximum metabolic rate (MMR) may modulate sociability through increased competitive ability. Therefore, in theory, individuals with a higher SMR may prefer smaller groups and those with greater MMR may prefer larger groups. We examined links among metabolic phenotype, sociability, and choice of group size in the redbelly yellowtail fusilier Caesio cuning. Individuals were exposed to three association tests: (a) a choice between two fish or zero fish; (b) a choice between five fish or zero fish; and (c) a choice between two fish and five fish. The first two tests quantified sociability while the third measured relative group size choice. Although there was no link between SMR and sociability, fish with a higher MMR were more social than those individuals with a lower MMR. While no correlation was found between MMR and group size choice, there was weak evidence that, if anything, individuals with a higher SMR preferred larger groups, contrary to our hypothesis. As C. cuning is an active fish that spends a large proportion of time operating above SMR, this result could suggest that the links between sociability and SMR may shift depending on a species’ routine behavior. Links between sociability and MMR may arise if competitive ability allows individuals to obtain resources within groups. Although metabolic traits had no significant influence on group size choice, variation in food availability or predation risk could alter the effects of metabolism on group size choice

    A First Assessment of the Corrections for the Consistency of the IAU2000 and IAU2006 Precession-Nutation Models

    Get PDF
    The Earth precession-nutation model endorsed by resolutions of each the International Astronomical Union and the International Union of Geodesy and Geophysics is composed of two theories developed independently, namely IAU2006 precession and IAU2000A nutation. The IAU2006 precession was adopted to supersede the precession part of the IAU 2000A precession-nutation model and tried to get the new precession theory dynamically consistent with the IAU2000A nutation. However, full consistency was not reached, and slight adjustments of the IAU2000A nutation amplitudes at the micro arcsecond level were required to ensure consistency. The first set of formulae for these corrections derived by Capitaine et al. (Astrophys 432(1):355–367, 2005), which was not included in IAU2006 but provided in some standards and software for computing nutations. Later, Escapa et al. showed that a few additional terms of the same order of magnitude have to be added to the 2005 expressions to get complete dynamical consistency between the official precession and nutation models. In 2018 Escapa and Capitaine made a joint review of the problem and proposed three alternative ways of nutation model and its parameters to achieve consistency to certain different extents, although no estimation of their respective effects could be worked out to illustrate the proposals. Here we present some preliminary results on the assessment of the effects of each of the three sets of corrections suggested by Escapa and Capitaine (Proceedings of the Journées, des Systémes de Référence et de la Rotation Terrestre: Furthering our Knowledge of Earth Rotation, Alicante, 2018) by testing them in conjunction with the conventional celestial pole offsets given in the IERS EOP14C04 time series.The four first authors were partially supported by Spanish Project AYA2016-79775-P (AEI/FEDER, UE)

    The theory of canonical perturbations applied to attitude dynamics and to the Earth rotation. Osculating and nonosculating Andoyer variables

    Full text link
    The Hamiltonian theory of Earth rotation, known as the Kinoshita-Souchay theory, operates with nonosculating Andoyer elements. This situation parallels a similar phenomenon that often happens (but seldom gets noticed) in orbital dynamics, when the standard Lagrange-type or Delaunay-type planetary equations unexpectedly render nonosculating orbital elements. In orbital mechanics, osculation loss happens when a velocity-dependent perturbation is plugged into the standard planetary equations. In attitude mechanics, osculation is lost when an angular-velocity-dependent disturbance is plugged in the standard dynamical equations for the Andoyer elements. We encounter exactly this situation in the theory of Earth rotation, because this theory contains an angular-velocity-dependent perturbation (the switch from an inertial frame to that associated with the precessing ecliptic of date). While the osculation loss does not influence the predictions for the figure axis of the planet, it considerably alters the predictions for the instantaneous spin-axis' orientation. We explore this issue in great detail

    Lorentz Covariant Theory of Light Propagation in Gravitational Fields of Arbitrary-Moving Bodies

    Get PDF
    The Lorentz covariant theory of propagation of light in the (weak) gravitational fields of N-body systems consisting of arbitrarily moving point-like bodies with constant masses is constructed. The theory is based on the Lienard-Wiechert presentation of the metric tensor. A new approach for integrating the equations of motion of light particles depending on the retarded time argument is applied. In an approximation which is linear with respect to the universal gravitational constant, G, the equations of light propagation are integrated by quadratures and, moreover, an expression for the tangent vector to the perturbed trajectory of light ray is found in terms of instanteneous functions of the retarded time. General expressions for the relativistic time delay, the angle of light deflection, and gravitational red shift are derived. They generalize previously known results for the case of static or uniformly moving bodies. The most important applications of the theory are given. They include a discussion of the velocity dependent terms in the gravitational lens equation, the Shapiro time delay in binary pulsars, and a precise theoretical formulation of the general relativistic algorithm of data processing of radio and optical astrometric measurements in the non-stationary gravitational field of the solar system. Finally, proposals for future theoretical work being important for astrophysical applications are formulated.Comment: 77 pages, 7 figures, list of references is updated, to be published in Phys. Rev. D6

    Astrometry and geodesy with radio interferometry: experiments, models, results

    Full text link
    Summarizes current status of radio interferometry at radio frequencies between Earth-based receivers, for astrometric and geodetic applications. Emphasizes theoretical models of VLBI observables that are required to extract results at the present accuracy levels of 1 cm and 1 nanoradian. Highlights the achievements of VLBI during the past two decades in reference frames, Earth orientation, atmospheric effects on microwave propagation, and relativity.Comment: 83 pages, 19 Postscript figures. To be published in Rev. Mod. Phys., Vol. 70, Oct. 199

    Hydrazones and Thiosemicarbazones Targeting Protein-Protein-Interactions of SARS-CoV-2 Papain-like Protease

    Get PDF
    The papain-like protease (PLpro) of SARS-CoV-2 is essential for viral propagation and, additionally, dysregulation of the host innate immune system. Using a library of 40 potential metal-chelating compounds we performed an X-ray crystallographic screening against PLpro. As outcome we identified six compounds binding to the target protein. Here we describe the interaction of one hydrazone (H1) and five thiosemicarbazone (T1-T5) compounds with the two distinct natural substrate binding sites of PLpro for ubiquitin and ISG15. H1 binds to a polar groove at the S1 binding site by forming several hydrogen bonds with PLpro. T1-T5 bind into a deep pocket close to the polyubiquitin and ISG15 binding site S2. Their interactions are mainly mediated by multiple hydrogen bonds and further hydrophobic interactions. In particular compound H1 interferes with natural substrate binding by sterical hindrance and induces conformational changes in protein residues involved in substrate binding, while compounds T1-T5 could have a more indirect effect. Fluorescence based enzyme activity assay and complementary thermal stability analysis reveal only weak inhibition properties in the high micromolar range thereby indicating the need for compound optimization. Nevertheless, the unique binding properties involving strong hydrogen bonding and the various options for structural optimization make the compounds ideal lead structures. In combination with the inexpensive and undemanding synthesis, the reported hydrazone and thiosemicarbazones represent an attractive scaffold for further structure-based development of novel PLpro inhibitors by interrupting protein-protein interactions at the S1 and S2 site
    • …
    corecore